Исчисление понятий

Исчисление понятий
        «ИСЧИСЛЕНИЕ ПОНЯТИЙ» («Запись в понятиях») — сочинение немецкого математика и логика Готтлоба Фреге, положившее начало современной форме математической (символической) логики. Полное название этого сочинения включало указание на то, что в нем излагается «язык формул чистого мышления, построенный по образцу арифметического» (Frege G. Begriffsschrift, eine der ariphmetischen nachgebildete Formelsprache des reinen Denkens. Jena, 1879; рус. пер. в книге: Фреге Г. Логика и логическая семантика: Сб. трудов. М., 2000). Выход в свет этого труда позволил его автору получить должность экстраординарного профессора Иенского университета, которую он занимал вплоть до своей отставки в 1918.
        Свой «язык формул чистого мышления» Фреге рассматривал как шаг в реализации замысла Лейбница — разработать всеобщую характеристику (cicullus philosophicus или calculus ratiocinator), но; в отличие от Лейбница он рассматривал язык «исчисления понятий» как вспомогательное научное средство, производное от естественного языка и содержательного мышления. Непосредственную же цель своего труда 1879 Фреге видел в том, чтобы чисто логически обосновать арифметику (как основу математического анализа): определить арифметические понятия в терминах логики, а ее законы вывести из логических законов. Для этого Фреге отказался от подхода традиционной логики и стал истолковывать понятия как функции в математическом смысле, но такие, что их аргументами являются предметы произвольной природы, а значениями — абстрактные объекты «истина» и «ложь», которым в последующих работах он дал название истинностных значений (или значений истинности). Построив оригинальный двумерный логический язык, Фреге изложил на нем — впервые в логике — дедуктивно-аксиоматическую систему классической расширенной логики предикатов с равенством при импликации и отрицании в качестве исходых пропозициональных операций и кванторе общности на логико-функциональном уровне, а также применил эту систему для формулировки некоторых математических понятий. В книге Фреге было показано, что через (материальную) импликацию и отрицание могут выражаться другие операции логики высказываний и фактически содержалось хорошо известное ныне их табличное задание; квантор существования вводился по определению — через квантор общности и операцию отрицания. К этой книге восходят различение переменных и постоянных (констант), свободных и связанных переменных; понятия терма и дескрипции; в этом труде был введен «штрих содержания» "—" помещаемый перед суждением: — Ли позволяющий оценивать его с точки зрения истиности либо ложности; если акт суждения завершается констатацией истинности А, то слева от горизонтали ставится вертикальная черта, и так возникает хорошо известный в современной логике знак доказанности: |—. Все законы логики, принятые либо доказанные в исчислении понятий, а также все полученные на их основе теоремы математического содержания, предварялись этим знаком, причем впервые было применено то, что ныне называется «анализом доказательства». В «И. п.» были заложены основы будущей фрегевской дефиниции чисел (численостей) как «свойств понятий».
        Аксиоматика, изложенная в работе Фреге, включала — на пропозициональном уровне — схемы аксиом, выражающие принцип «Истина следует из всего что угодно», ослабленный модус поненс (или закон самодистибутивности импликации), законы введения и снятия (двойного) отрицания, а также перестановки посылок в логической формуле; задавались законы, определяющие отношение равенства; квантор общности вводился при задавании языка исчисления понятий. Правилами дедуктивного перехода служили модус поненс и правило удаления квантора общности. Исчисление высказываний Фреге было дедуктивно полно и непротиворечиво. Его расширение до логики, предикатов второго порядка, где допускались функциональные переменные и их связывание квантором общности, таило в себе угрозу противоречия, которая, однако, не реализовалась из-за того, что в «И. п.» не был задан способ перехода от функций (в частности предикатов) к областям их предметных значений (объемам предикатов — свойств и отношений), т.е. не формулировался принцип экстенсиональности (объемности). Поэтому присущее Фреге представление об универсальности предметной области в логике (предметы — это все, что отлично от функций) не влекло противоречивости системы, изложенной в его труде.
        Значение логических результатов Фреге не было понято современниками. Его символика не получила распространения. Важность трудов Фреге, начиная с «И. п.», открыл Б. Рассел, транслировавший, популяризировавший и развивавший его идеи. Современные аксиоматики классической логики высказываний и предикатов в значительной степени повторяют Фреге, а стиль их построения, называемый «гильбетовским», на самом деле является фрегевским.
        Б.В. Бирюков
        Лит.: Бирюков Б.В. Готтлоб Фреге и современная наука // Фреге Г. Логика и логическая семантика. М., 2000; Его же. В логическом мире Фреге // Там же; Currie G. Frege. An Introduction to his Philosophy. Bringhton, Sussex; Totowa, N. J., 1982; Kutschera R von. Gottlob Frege. Eine Einfiihrung in sein Werk. В., N.Y., 1989; Stelzner W. Gottlob Frege. Jena und die Geburt der modernen Logik. ReFIT e. V., 1996; KreiserL. Gottlob Frege. Leben — Werk — Zeit. Hamburg, 2001.

Энциклопедия эпистемологии и философии науки. М.: «Канон+», РООИ «Реабилитация». . 2009.

Игры ⚽ Поможем решить контрольную работу

Полезное


Смотреть что такое "Исчисление понятий" в других словарях:

  • ИСЧИСЛЕНИЕ КЛАССОВ —         аксиоматич. (см. Аксиоматический метод) описание логики классов. И. к. рав нообъёмно исчислению одноместных предикатов (см. Логика предикатов): у этих исчислений совпадают классы как исходных формул, так и выводимых формул (теорем);… …   Философская энциклопедия

  • Исчисление — У этого термина существуют и другие значения, см. Исчисление (значения) …   Википедия

  • Исчисление предикатов — Логика первого порядка (исчисление предикатов)  формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций, и предикатов. Расширяет логику высказываний. В свою очередь является частным случаем логики высшего… …   Википедия

  • Дифференциальное исчисление —         раздел математики, в котором изучаются производные и дифференциалы функций и их применения к исследованию функций. Оформление Д. и. в самостоятельную математическую дисциплину связано с именами И. Ньютона и Г. Лейбница (вторая половина 17 …   Большая советская энциклопедия

  • Векторное исчисление —         математическая дисциплина, в которой изучают свойства операций над Векторами евклидова пространства. При этом понятие вектора представляет собой математическую абстракцию величин, характеризующихся не только численным значением, но и… …   Большая советская энциклопедия

  • Интегральное исчисление —         раздел математики, в котором изучаются свойства и способы вычисления интегралов и их приложения. И. и. тесно связано с дифференциальным исчислением (См. Дифференциальное исчисление) и составляет вместе с ним одну из основных частей… …   Большая советская энциклопедия

  • Многомерное исчисление — (также известное как многовариантное исчисление) является расширением исчисления функций одной переменной в исчисление функций нескольких переменных: функции, которые дифференцируются и интегрируются, затрагивая несколько переменных, а не одну.… …   Википедия

  • ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ — раздел математики, в к ром изучаются понятия интеграла, его свойства и методы вычислений. И. и. непрерывно связано с дифференциальным исчислением и составляет вместе с ним основу математич. анализа. Истоки И. и. относятся к античному периоду… …   Математическая энциклопедия

  • ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ — раздел математики, в к ром изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Развитие Д. и. тесно связано с развитием интегрального исчисления. Неразрывно и их содержание. Вместе они составляют основу… …   Математическая энциклопедия

  • БЕСКОНЕЧНО МАЛЫХ ИСЧИСЛЕНИЕ — термин, ранее объединявший различные разделы математич. анализа, связанные с понятием бесконечно малой функции. Хотя метод бесконечно малых (в той или иной форме) с успехом применялся учеными Древней Греции и средневековой Европы для решения… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»